A subspace of IR" is a smaller linear space that passes through the origin.

EX: In
$$\mathbb{R}^2$$
, lines through the origin are subspaces.
(The origin itself is also a subspace!)
(The origin $\frac{1}{2}$)

In IR³, the subspaces are planes and lines through the origin, as well as the origin itself.

In general, we define subspaces as follows:

Definition: A set (i.e. collection) U of vectors in

$$\mathbb{R}^n$$
 is a subspace of \mathbb{R}^n if it satisfies:
(i) The zero vector is in U, i.e. $\vec{O} \in U$
(ii) If $\vec{x} \in U$ and $\vec{y} \in U$, then $\vec{x} + \vec{y} \in U$.
(closed under addition")
(closed under addition")
(closed under scalar multiplication")
(closed under scalar mul

so $\vec{v}_1 + \vec{v}_2$ is in the plane.

(3) If \vec{v} is in the plane, and s is a scalar, then $\vec{n} \cdot (s\vec{v}) = s(\vec{n} \cdot \vec{v}) = s(0) = 0.$

Each matrix A has 2 very important subspaces that correspond to it:

We can check that these are both subspaces of IK" and IR", respectively:

 $(1) \vec{O} \text{ is in null } A, \text{ since } A\vec{O} = \vec{O}.$

(2) If
$$\vec{v}_1$$
 and \vec{v}_2 are in hull A, then
 $A(\vec{v}_1 + \vec{v}_2) = A\vec{v}_1 + A\vec{v}_2 = \vec{O}$.
(3) If \vec{v} is hull A and a is a scalar, then $A(a\vec{v}) = a(A\vec{v}) = \vec{O}$.
So hull A is a subspace of \mathbb{R}^m .

Exercise: Check that imA is a subspace of R.

Eigenspaces

Let
$$\lambda$$
 be any number. Define
 $E_{\lambda}(A) = \{\vec{x} \in \mathbb{R}^{n} \mid A\vec{x} = \lambda\vec{x}\}.$
Then \vec{x} is in $E_{\lambda}(A)$ if and only if $(\lambda I - A)\vec{x} = \vec{0}$. So
 $E_{\lambda}(A) = hull(\lambda I - A)$

Thus, $F_{\lambda}(A)$ is a subspace of \mathbb{R}^{n} , called the <u>eigenspace</u> of A corresponding to λ .

If $F_{\lambda}(A)$ contains any nonzero vectors, then λ is an eigenvalue and the nonzero vectors in $F_{\lambda}(A)$ are the corresponding eigenvectors. Let \vec{v} and \vec{w} be two nonzero, nonparallel vectors in \mathbb{R}^3 (w/tails at the origin). Let M be the plane through the origin containing \vec{v} and \vec{w} .

Then a vector
$$\vec{p}$$
 is in M if
and only if $\vec{p} = a\vec{v} + b\vec{w}$
for some a, b in IR,
i.e. \vec{p} is a linear combination of \vec{v} and \vec{w} .

So we can describe
$$M$$
 as
 $M = \{a\vec{v} + b\vec{w} \mid a, b \in \mathbb{R} \}$.
 $\{\vec{v}, \vec{w}\}$ is called a spanning set for M .
More generally:

Def: Given
$$\vec{x}_1, \vec{x}_2, ..., \vec{x}_k$$
 in \mathbb{R}^k , the set of all linear
combinations of $\vec{x}_1, ..., \vec{x}_k$ is called the span of the
 \vec{x}_i , and is denoted

spon
$$\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\} = \{t_1, \vec{x}_1 + \dots + t_k, \vec{x}_k | t_i \text{ in } \mathbb{R}\}$$

Ex: For any single vector
$$\vec{x}$$
, we have
 $span\{\vec{x}\} = \{t\vec{x} \mid t \in \mathbb{R}\}, \text{ which is the line through}$

the origin containing \vec{x} .

We saw above that if \vec{x} , \vec{y} are nonparallel vectors, then span $\{\vec{x}, \vec{y}\}\$ is the plane through the origin containing \vec{x}, \vec{y} .

Thm: Let
$$U = span \{\vec{x}_1, ..., \vec{x}_k\}$$
 in \mathbb{R}^n . Then:

1.) U is a subspace of IR" containing each \vec{x}_i .

2.) If W is a subspace of \mathbb{R}^n and each $x_i \in W$, then $U \subseteq W$ (i.e. U is contained in W).

Ex If
$$\vec{e}_1, ..., \vec{e}_n$$
 is the standard basis in \mathbb{R}^n , then
 $\mathbb{R}^n = \operatorname{span} \{ \vec{e}_1, ..., \vec{e}_n \}$
since every vector $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$ is a linear comb. of the e_i :
 $\begin{bmatrix} a_i \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$
 $\begin{bmatrix} a_i \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = a_i \vec{e}_i + a_2 \vec{e}_2 + \dots + a_n \vec{e}_n$.

Spanning sets for null A and im A

null A is the set of solutions to $A\vec{x} = \vec{U}$. Thus, if $\vec{v}_1, ..., \vec{v}_n$ is a set of basic solutions, null A consists of linear combinations of V1,..., Vn. 80

$$\frac{\text{mll A} = \text{span}\left\{\vec{v}_{1}, \dots, \vec{v}_{n}\right\}}{\text{Ex}}$$
If $A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$, what is mull A?

First we solve:

$$\begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \end{bmatrix}$$

$$\implies \chi_1 + 2\chi_3 = 0 , \quad \chi_2 - \chi_3 = 0$$

setting
$$x_3 = s_1$$
, $x_4 = t_1$, solutions are

$$\begin{bmatrix}
-2s \\
s \\
t
\end{bmatrix} = s \begin{bmatrix}
-2 \\
1 \\
0
\end{bmatrix} + t \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}$$
so null A = span $\left\{ \begin{bmatrix}
-2 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \right\}$

To find im A, let $\vec{c}_1, ..., \vec{c}_n$ denote the columns of A. So $A = [\vec{c}_1 ... \vec{c}_n]$. Then if $\vec{e}_1, ..., \vec{e}_n$ is the standard basis, we have

Thus, each c; is in im A.

If
$$\vec{x} = \begin{pmatrix} x_i \\ \vdots \\ x_n \end{pmatrix}$$
 is an arbitrary vector, Then

$$\vec{\chi} = \chi_1 \vec{e}_1 + \chi_2 \vec{e}_2 + \dots + \chi_n \vec{e}_n$$
, so

$$A \overrightarrow{x} = \chi_1 A \overrightarrow{e}_1 + \chi_2 A \overrightarrow{e}_2 + \dots + \chi_n A \overrightarrow{e}_n$$
$$= \chi_1 \overrightarrow{c}_1 + \dots + \chi_n \overrightarrow{c}_n.$$

so the image of A consists of all linear combinations of the columns of A. i.e.

$$im A = span \{ \vec{c}_1, \dots, \vec{c}_n \}$$

$$\begin{array}{c} \textbf{Fx:} \quad \text{If } A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix}, \quad \text{Then } \quad \text{in } A = \text{span} \left\{ \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix} \right\}.$$

Practice Problems: 5.1: 1,26,3a,4,7,16,17a