Subspaces of \mathbb{R}^{n}

A subspace of \mathbb{R}^{n} is a smaller linear space that passes through the origin.

Ex: In \mathbb{R}^{2}, lines through the origin are subspaces. (The origin itself is also a subspace!)

In \mathbb{R}^{3}, the subspaces are planes and lines through the origin, as well as the origin itself.

In general, we define subspaces as follows:

Definition: A set (i.e. collection) U of vectors in \mathbb{R}^{n} is a subspace of \mathbb{R}^{n} if it satisfies:
(1.) The zero vector is in U, ie. $\vec{O} \in U$
(2.) If $\vec{x} \in U$ and $\vec{y} \in U$, then $\vec{x}+\vec{y} \in U$. ("closed under addition")
(3.) If $\vec{x} \in U$, then $a \vec{x} \in U$ for every real number a. ("closed under scalar multiplication")

Ex: A plane in \mathbb{R}^{3} through the origin has equation

$$
\vec{u} \cdot \vec{v}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0 \text {, or } a x+b y+c z=0
$$

where $\vec{n}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is a normal vector.

Let's check that this is a subspace:
(1.) If $\vec{v}=\overrightarrow{0}$, then $\vec{n} \cdot \vec{v}=\vec{n} \cdot \overrightarrow{0}=0$, so $\overrightarrow{0}$ is in the plane.
(2.) If \vec{v}_{1} and \vec{v}_{2} are in the plane, then

$$
\vec{n} \cdot\left(\vec{v}_{1}+\vec{v}_{2}\right)=\underbrace{\vec{h} \cdot \vec{v}_{1}}_{0}+\underbrace{\vec{n} \cdot \vec{v}_{2}}_{0}=0,
$$

so $\vec{v}_{1}+\vec{v}_{2}$ is in the place.
(3.) If \vec{v} is in the plane, and s is a scalar, then

$$
\vec{n} \cdot(s \vec{v})=s(\vec{n} \cdot \vec{v})=s(0)=0 .
$$

So any plane through the origin is a subspace of \mathbb{R}^{3}.

Each matrix A has 2 very important subspaces that correspond to it:

Def: Let A be an $m \times n$ matrix.
(1.) The hull space of A, denoted null A, is the set of vectors \vec{V} in \mathbb{R}^{n} such that $A \vec{v}=\overrightarrow{0}$.

$$
\text { nu\| } A=\left\{\vec{v} \in \mathbb{R}^{n}| |_{\uparrow} A \vec{v}=\overrightarrow{0}\right\} .
$$

(2.) The image space of A, denoted $\operatorname{im} A$, is the set of vectors in \mathbb{R}^{m} of the form $A \vec{V}$.

That is, vectors \vec{W}, such that $A \vec{x}=\vec{W}$ has a solution.

We can check that these are both subspaces of \mathbb{R}^{n} and \mathbb{R}^{m}, respectively:
null A :
(1.) \vec{O} is in null A, since $A \overrightarrow{0}=\overrightarrow{0}$.
(2.) If \vec{v}_{1} and \vec{v}_{2} are in $\operatorname{null} A$, then

$$
A\left(\vec{v}_{1}+\vec{v}_{2}\right)=A \vec{v}_{1}+A \vec{v}_{2}=\overrightarrow{0} .
$$

(3.) If $\vec{v} \in \operatorname{hull} A$ and a is a scalar, then $A(a \vec{v})=a \underbrace{(A \vec{v})}_{0}=\overrightarrow{0}$.

So mull A is a subspace of \mathbb{R}^{m}.

Exercise: Check that $\operatorname{im} A$ is a subspace of \mathbb{R}^{n}.

Eigenspaces

Let λ be any number. Define

$$
E_{\lambda}(A)=\left\{\vec{x} \in \mathbb{R}^{n} \mid A \vec{x}=\lambda \vec{x}\right\} .
$$

Then \vec{x} is in $E_{1}(A)$ if and only if $(\lambda I-A) \vec{x}=\overrightarrow{0}$. so

$$
E_{\lambda}(A)=\operatorname{hull}(\lambda I-A)
$$

Thus, $E_{\lambda}(A)$ is a subspace of \mathbb{R}^{n}, called the eigenspace of A corresponding to λ.

If $E_{\lambda}(A)$ contains any nonzero vectors, then λ is an eigenvalue and the nonzero vectors in $E_{\lambda}(A)$ are the corresponding eigenvectors.

Spanning sets

Let \vec{v} and \vec{w} be two nonzew, non parallel vectors in \mathbb{R}^{3} (w / tails at the origin). Let M be the plane through the origin containing \vec{v} and \vec{w}.

Then a vector \vec{p} is in M if and only if $\vec{p}=a \vec{v}+b \vec{w}$ for some a, b in \mathbb{R}, i.e. \vec{p} is a linear combination of \vec{v} and \vec{w}.

So we can describe M as

$$
M=\{a \stackrel{\rightharpoonup}{v}+b \stackrel{\rightharpoonup}{w} \mid a, b \in \mathbb{R}\} .
$$

$\{\vec{v}, \vec{w}\}$ is called a spanning set for M.
More generally:
Def: Given $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}$ in \mathbb{R}^{n}, the set of all linear combinations of $\vec{x}_{1}, \ldots, \vec{x}_{k}$ is called the span of the \vec{x}_{i}, and is denoted

$$
\operatorname{span}\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}\right\}=\left\{t_{1} \vec{x}_{1}+\ldots+t_{k} \vec{x}_{k} \mid t_{i} \text { in } \mathbb{R}\right\} .
$$

Ex: For any single vector \vec{x}, we have $\operatorname{span}\{\vec{x}\}=\{t \vec{x} \mid t \in \mathbb{R}\}$, which is the line through
the origin containing \vec{x}.

We saw above that if \vec{x}, \vec{y} are non parallel vectors, then $\operatorname{span}\{\vec{x}, \vec{y}\}$ is the plane through the origin containing \vec{x}, \vec{y}.

The: Let $u=\operatorname{span}\left\{\vec{x}_{1}, \ldots, \vec{x}_{k}\right\}$ in \mathbb{R}^{n}. Then:
1.) U is a subspace of \mathbb{R}^{n} containing each \vec{x}_{i}.
2.) If W is a subspace of \mathbb{R}^{n} and each $x_{i} \in W$, then $U \subseteq W$ (ie. U is contained in W).

Ex: If $\vec{e}_{1}, \ldots, \vec{e}_{n}$ is the standard basis in \mathbb{R}^{n}, then

$$
\mathbb{R}^{n}=\operatorname{span}\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}
$$

since every vector $\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right]$ is a linear combs of the e_{i} :

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=a_{1} \vec{e}_{1}+a_{2} \vec{e}_{2}+\ldots+a_{n} \vec{e}_{n} .
$$

Spanning sets for null A and $\operatorname{im} A$
null A is the set of solutions to $A \vec{x}=\overrightarrow{0}$. Thus, if $\vec{v}_{1}, \ldots, \vec{v}_{n}$ is a set of basic solutions, hull A consists of linear
combinations of $\vec{V}_{1}, \ldots, \vec{V}_{n}$. So

$$
\operatorname{mull} A=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{V}_{n}\right\}
$$

Ex: If $A=\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0\end{array}\right]$, what is null A ?

First we solve:

$$
\begin{aligned}
& {\left[\begin{array}{rrrr|r}
1 & 2 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 2 & 0 & 0 \\
0 & 1 & -1 & 0 & 0
\end{array}\right]} \\
& \quad \Rightarrow x_{1}+2 x_{3}=0, \quad x_{2}-x_{3}=0
\end{aligned}
$$

setting $x_{3}=s, x_{4}=t$, solutions are

$$
\left[\begin{array}{c}
-2 s \\
s \\
s \\
t
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

so $\operatorname{null} A=\operatorname{span}\left\{\left[\begin{array}{c}-2 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$

To find $\operatorname{im} A$, let $\vec{c}_{1}, \ldots, \vec{c}_{n}$ denote the columns of A. So $A=\left[\vec{c}_{1} \ldots \vec{c}_{n}\right]$. Then if $\vec{e}_{1}, \ldots, \vec{e}_{n}$ is the standard basis, we have

$$
A \vec{e}_{i}=\vec{C}_{i}
$$

Thus, each c_{i} is in $\operatorname{im} A$.

If $\vec{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ is an arbitrary vector, then

$$
\begin{aligned}
\vec{x} & =x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}+\ldots+x_{n} \vec{e}_{n} \text {, so } \\
A \vec{x} & =x_{1} A \vec{e}_{1}+x_{2} A \vec{e}_{2}+\ldots+x_{n} A \vec{e}_{n} \\
& =x_{1} \vec{c}_{1}+\ldots+x_{n} \vec{c}_{n} .
\end{aligned}
$$

So the image of A consists of all linear combinations of the columns of A. i.e.

$$
\operatorname{im} A=\operatorname{span}\left\{\vec{C}_{1}, \ldots, \vec{C}_{n}\right\}
$$

Ex: If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 0 & 1\end{array}\right]$, then im $A=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 1\end{array}\right]\right\}$.
$\underbrace{\text { Practice Problems: 5.1: } 1,2 b, 3 a, 4,7,16,17 a}$

